Reusable plasmonic substrates fabricated by interference lithography: a platform for systematic sensing studies
نویسندگان
چکیده
Surface-enhanced Raman scattering (SERS) has become increasingly popular in the scientific and industrial communities because of its analytical capabilities and potential to study fundamentals in plasmonics. Although under certain conditions extremely high sensitivity is possible, the practical use of SERS is frequently limited by instability and poor reproducibility of the enhancement factor. For analytical applications or for comparative measurements to enable the distinction between electromagnetic and chemical enhancement, the development of standardized and recyclable SERS substrates, having uniform and persistent performance, is proposed. To this end, we have fabricated periodic nanoslit arrays using extreme ultraviolet lithography that provide average large (2*10) and homogeneous SERS enhancement factors with a spot-to-spot variability of less than 3%. In addition, they are reusable without any degradation or loss of enhancement. The fabrication of such arrays consists of two steps only, lithographic patterning followed by metal evaporation. Both processes may be performed over areas of several square mm on any planar substrate. The sensor capabilities were demonstrated by substrates with monomolecular films of several different thiols. The concept of reusable SERS substrates may open a powerful platform within an analytical tool and in particular for systematic SERS studies for the investigation of fundamental parameters such as chemical enhancement, surface selection rules, and molecular alignment. Copyright © 2012 John Wiley & Sons, Ltd.
منابع مشابه
Nanostencil lithography for high-throughput fabrication of infrared plasmonic sensors
We demonstrate a novel fabrication approach for high-throughput fabrication of engineered infrared plasmonic nanorod antenna arrays with Nanostencil Lithography (NSL). NSL technique, relying on deposition of materials through a shadow mask, offers the flexibility and the resolution to fabricate radiatively engineer nanoantenna arrays for excitation of collective plasmonic resonances. Overlappin...
متن کاملAn optimal substrate design for SERS: dual-scale diamond-shaped gold nano-structures fabricated via interference lithography.
Dual-scale diamond-shaped gold nanostructures (d-DGNs) with larger scale diamond-shaped gold nanoposts (DGNs) coupled to smaller scale gold nanoparticles have been fabricated via interference lithography as a highly reliable and efficient substrate for surface enhanced Raman scattering (SERS). The inter- and intra-particle plasmonic fields of d-DGNs are varied by changing the periodicity of the...
متن کاملHigh performance plasmonic crystal sensor formed by soft nanoimprint lithography.
This paper describes a new type of plasmonic sensor fabricated by imprint lithography using a soft, elastomeric mold. Angle-dependent, zero-order transmission experiments demonstrate the sensing potential of this device, which uses a two dimensional plasmonic crystal. Full angle-dependent mapping shows that the sensitivity to surface chemical binding events reaches maxima near regions of the pl...
متن کاملNovel high-throughput and maskless photolithography to fabricate plasmonic molecules
Articles you may be interested in Fabrication and optical properties of controlled Ag nanostructures for plasmonic applications Formation of triplet and quadruplet plasmonic nanoarray templates by holographic lithography Appl. Sensing properties of infrared nanostructured plasmonic crystals fabricated by electron beam lithography and argon ion milling Fabrication of sub-10nm gap arrays over lar...
متن کاملFabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching
In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...
متن کامل